The stability of arsenic and selenium compounds that were retained in limestone in a coal gasification atmosphere.

نویسندگان

  • M Díaz-Somoano
  • M A López-Antón
  • F E Huggins
  • M R Martínez-Tarazona
چکیده

The aim of this work was to evaluate the stability of arsenic and selenium species retained in a lime/limestone mixture obtained by using limestone as a sorbent for gas cleaning in a coal gasification atmosphere. It was found that the stability of arsenic and selenium species produced by the gas-solid reactions with lime/limestone may be affected by their exposure to air and by their contact with water. The results confirm the conclusions of a previous work in which Ca(AsO(2))(2) and CaSe was postulated as the products of the reaction between the arsenic and selenium species present in a coal gasification atmosphere with lime/limestone. Moreover it was proved that the compounds (Ca(AsO(2))(2) and CaSe) may undergo transformations when the sorbents post-retention are stored or disposed of in air. From the results obtained by XAFS it was possible to identify the Ca(3)(AsO(4))(2) produced by the oxidation of the Ca(AsO(2))(2) on the sorbent surface. The XAFS results for selenium showed that the CaSe formed on the sorbent was transformed to form several species, but mainly elemental Se. These changes in the speciation of arsenic and selenium may explain the behavior of the sorbent post-retention during the water solubility test. Although the selenium compounds and the products that may originate from their decomposition in water are not toxic, in the case of arsenic, species like Ca(AsO(2))(2) and Ca(3)(AsO(4))(2) may lixiviate, and generate toxic arsenic compounds in solution that could pose a risk when the sorbent is finally disposed of.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic and selenium capture by fly ashes at low temperature.

Arsenic and selenium compounds may be emitted to the environment during coal conversion processes, although some compounds are retained in the fly ashes, in different proportions depending on the characteristics of the ashes and process conditions. The possibility of optimizing the conditions to achieve better trace element retention appears to be an attractive, economical option for reducing t...

متن کامل

Effect of CaO, Al2O3 and Fe2O3 in coal ash on the retention of acid- forming elements during coal combustion

Industrial coal combustion ashes as well as laboratory-scale experiments were used for the evaluation whether CaO, Al2O3 and Fe2O3 can help with the retention of volatile and acid-forming elements (S, Cl, Br, As and Se). Both industrial ashes evaluation and laboratory combustion experiments lead to the conclusion that CaO can efficiently help with the capture of not only S, but also of Cl, Br, ...

متن کامل

A theoretical study of properties and reactions involving arsenic and selenium compounds present in coal combustion flue gases.

Species of arsenic and selenium thought to be present in coal combustion flue gases were studied using density functional theory and a broad range of ab initio methods. At each level of theory, the calculated geometries and vibrational frequencies of each species as well as the reaction enthalpies of anticipated reactions were compared with experimental data where available. Comparisons between...

متن کامل

Adsorption of Trace Elements and Sulfur Dioxide on Calcium-Based Sorbents

With the reduction of natural gas and petroleum sources and subsequent increases in their costs, energy from coal is becoming increasingly popular. However, coal is not a clean technology, so with this demand comes a demand to make this energy source more environmentally friendly. Trace elements, such as mercury, arsenic, and selenium, are highly volatile and are known to escape into the atmosp...

متن کامل

The Effect of Air Fuel Ratio and Temperature on Syngas Composition and Calorific Value Produced from Downdraft Gasifier of Rubber Wood-Coal Mixture

Rubber wood (Ficus elastica) is one the biomass waste that can be used as raw material for a gasification process and has a calorific value of 4,069 cal/gram. Gasification is a process to convert a solid fuel to syngas (CO, CH4, and H2) through a combustion process using limited air between 20% to 40% of air stoichiometry. Depending on the direction of airflow, the gasifiers are classified as u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 173 1-3  شماره 

صفحات  -

تاریخ انتشار 2010